MongoDB with pyMongo III - Range Querying
List of MongoDB with PyMongo
- MongoDB with PyMongo I - Installing MongoDB
- MongoDB with PyMongo II - Connecting and accessing MongoDB
- MongoDB with pyMongo III - Range Querying MongoDB
- MongoDB RESTful API with Flask
Here is the current code for this chapter:
# mongo3.py from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017/') mydb = client['test-database'] mydb.posts.drop() import datetime post = { "author": "Duke 5", "title" : "PyMongo 101 - 5", "tags" : ["MongoDB 5", "PyMongo 101 - A5", "Tutorial 5"], "date" : datetime.datetime.utcnow() } posts = mydb.posts post_id = posts.insert(post) print post_id print mydb.collection_names() new_posts = [{"author": "Duke 6", "title" : "PyMongo 101-A6", "tags" : ["MongoDB 6", "PyMongo 6", "Tutorial 6"], "date" : datetime.datetime(2015, 11, 28, 01, 13)}, {"author": "Adja", "title": "MongoDB 101-A7", "note": "Schema free MongoDB", "date": datetime.datetime(2015, 11, 29, 11, 42)} ] mydb.posts.insert(new_posts)
To get more than a single document as the result of a query we use the find() method. find() returns a Cursor instance, which allows us to iterate over all matching documents. For example, we can iterate over every document in the mydb.posts collection after running the code of the previous section:
>>> for post in mydb.mytable.find(): ... post ... {u'date': datetime.datetime(2015, 11, 28, 5, 18, 40, 945000), u'_id': ObjectId('5659393d312f910b5b05c18a'), u'author': u'Duke', u'tags': [u'MongoDB', u'PyMongo', u'Tutorial'], u'title': u'PyMongo 101'} {u'date': datetime.datetime(2015, 11, 28, 6, 11, 6, 496000), u'_id': ObjectId('5659457a312f91162bf20276'), u'author': u'Duke II', u'tags': [u'MongoDB II', u'PyMongo II', u'Tutorial II'], u'title': u'PyMongo II 101'} {u'date': datetime.datetime(2015, 11, 28, 6, 11, 6, 496000), u'_id': ObjectId('5659457a312f91162bf20277'), u'author': u'Duke III', u'tags': [u'MongoDB III', u'PyMongo III', u'Tutorial III'], u'title': u'PyMongo III 101'} {u'date': datetime.datetime(2015, 11, 28, 7, 2, 37, 317000), u'_id': ObjectId('56595481312f9119e4bace31'), u'author': u'Duke 4', u'tags': [u'MongoDB 4', u'PyMongo 4', u'Tutorial 4'], u'title': u'PyMongo 4 101'} ...
We can pass a document to find() to limit the returned results. Here, we get only those documents whose author is "Adja":
>>> for post in mydb.mytable.find({"author": "Adja"}): ... post ... {u'note': u'Schema free MongoDB', u'date': datetime.datetime(2015, 11, 29, 11, 42), u'_id': ObjectId('56595cf0312f912bc242f79e'), u'author': u'Adja', u'title': u'MongoDB 101-A7'} >>>
When we just want to know how many documents match a query, we can perform a count() operation instead of a full query:
>>> mydb.mytable.count() 7 >>> mydb.mytable.find({"author": "Adja"}).count() 1
Let's perform a query where we limit results to posts older than a certain date, but also sort the results by author:
>>> import datetime >>> for post in mydb.mytable.find({"date": {"$lt": datetime.datetime(2015, 12, 1)}}).sort("author"): ... post ... {u'note': u'Schema free MongoDB', u'date': datetime.datetime(2015, 11, 29, 11, 42), u'_id': ObjectId('56595cf0312f912bc242f79e'), u'author': u'Adja', u'title': u'MongoDB 101-A7'} {u'date': datetime.datetime(2015, 11, 28, 5, 18, 40, 945000), u'_id': ObjectId('5659393d312f910b5b05c18a'), u'author': u'Duke', u'tags': [u'MongoDB', u'PyMongo', u'Tutorial'], u'title': u'PyMongo 101'} ...
List of MongoDB with PyMongo
- MongoDB with PyMongo I - Installing MongoDB
- MongoDB with PyMongo II - Connecting and accessing MongoDB
- MongoDB with pyMongo III - Range Querying MongoDB
- MongoDB RESTful API with Flask
Python tutorial
Python Home
Introduction
Running Python Programs (os, sys, import)
Modules and IDLE (Import, Reload, exec)
Object Types - Numbers, Strings, and None
Strings - Escape Sequence, Raw String, and Slicing
Strings - Methods
Formatting Strings - expressions and method calls
Files and os.path
Traversing directories recursively
Subprocess Module
Regular Expressions with Python
Regular Expressions Cheat Sheet
Object Types - Lists
Object Types - Dictionaries and Tuples
Functions def, *args, **kargs
Functions lambda
Built-in Functions
map, filter, and reduce
Decorators
List Comprehension
Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism
Hashing (Hash tables and hashlib)
Dictionary Comprehension with zip
The yield keyword
Generator Functions and Expressions
generator.send() method
Iterators
Classes and Instances (__init__, __call__, etc.)
if__name__ == '__main__'
argparse
Exceptions
@static method vs class method
Private attributes and private methods
bits, bytes, bitstring, and constBitStream
json.dump(s) and json.load(s)
Python Object Serialization - pickle and json
Python Object Serialization - yaml and json
Priority queue and heap queue data structure
Graph data structure
Dijkstra's shortest path algorithm
Prim's spanning tree algorithm
Closure
Functional programming in Python
Remote running a local file using ssh
SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table
SQLite 3 - B. Selecting, updating and deleting data
MongoDB with PyMongo I - Installing MongoDB ...
Python HTTP Web Services - urllib, httplib2
Web scraping with Selenium for checking domain availability
REST API : Http Requests for Humans with Flask
Blog app with Tornado
Multithreading ...
Python Network Programming I - Basic Server / Client : A Basics
Python Network Programming I - Basic Server / Client : B File Transfer
Python Network Programming II - Chat Server / Client
Python Network Programming III - Echo Server using socketserver network framework
Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn
Python Coding Questions I
Python Coding Questions II
Python Coding Questions III
Python Coding Questions IV
Python Coding Questions V
Python Coding Questions VI
Python Coding Questions VII
Python Coding Questions VIII
Python Coding Questions IX
Python Coding Questions X
Image processing with Python image library Pillow
Python and C++ with SIP
PyDev with Eclipse
Matplotlib
Redis with Python
NumPy array basics A
NumPy Matrix and Linear Algebra
Pandas with NumPy and Matplotlib
Celluar Automata
Batch gradient descent algorithm
Longest Common Substring Algorithm
Python Unit Test - TDD using unittest.TestCase class
Simple tool - Google page ranking by keywords
Google App Hello World
Google App webapp2 and WSGI
Uploading Google App Hello World
Python 2 vs Python 3
virtualenv and virtualenvwrapper
Uploading a big file to AWS S3 using boto module
Scheduled stopping and starting an AWS instance
Cloudera CDH5 - Scheduled stopping and starting services
Removing Cloud Files - Rackspace API with curl and subprocess
Checking if a process is running/hanging and stop/run a scheduled task on Windows
Apache Spark 1.3 with PySpark (Spark Python API) Shell
Apache Spark 1.2 Streaming
bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...
Flask app with Apache WSGI on Ubuntu14/CentOS7 ...
Fabric - streamlining the use of SSH for application deployment
Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App
Neural Networks with backpropagation for XOR using one hidden layer
NLP - NLTK (Natural Language Toolkit) ...
RabbitMQ(Message broker server) and Celery(Task queue) ...
OpenCV3 and Matplotlib ...
Simple tool - Concatenating slides using FFmpeg ...
iPython - Signal Processing with NumPy
iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github
iPython and Jupyter Notebook with Embedded D3.js
Downloading YouTube videos using youtube-dl embedded with Python
Machine Learning : scikit-learn ...
Django 1.6/1.8 Web Framework ...
Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization