BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

Python Functions - map, filter, and functools.reduce

python_logo




Bookmark and Share





bogotobogo.com site search:

map, filter, and reduce

Python provides several functions which enable a functional approach to programming. These functions are all convenience features in that they can be written in Python fairly easily.




Functional programming is all about expressions. We may say that the Functional programming is an expression oriented programming.

Expression oriented functions of Python provides are:

  1. map(aFunction, aSequence)
  2. filter(aFunction, aSequence)
  3. reduce(aFunction, aSequence)
  4. lambda
  5. list comprehension




map

One of the common things we do with list and other sequences is applying an operation to each item and collect the result.

For example, updating all the items in a list can be done easily with a for loop:

>>> items = [1, 2, 3, 4, 5]
>>> squared = []
>>> for x in items:
	squared.append(x ** 2)

	
>>> squared
[1, 4, 9, 16, 25]
>>> 

Since this is such a common operation, actually, we have a built-in feature that does most of the work for us.

The map(aFunction, aSequence) function applies a passed-in function to each item in an iterable object and returns a list containing all the function call results.

>>> items = [1, 2, 3, 4, 5]
>>> 
>>> def sqr(x): return x ** 2

>>> list(map(sqr, items))
[1, 4, 9, 16, 25]
>>> 

We passed in a user-defined function applied to each item in the list. map calls sqr on each list item and collects all the return values into a new list.



Because map expects a function to be passed in, it also happens to be one of the places where lambda routinely appears:

>>> list(map((lambda x: x **2), items))
[1, 4, 9, 16, 25]
>>> 

In the short example above, the lambda function squares each item in the items list.




As shown earlier, map is defined like this:

map(aFunction, aSequence)

While we still use lamda as a aFunction, we can have a list of functions as aSequence:

def square(x):
        return (x**2)
def cube(x):
        return (x**3)

funcs = [square, cube]
for r in range(5):
    value = map(lambda x: x(r), funcs)
    print value

Output:

[0, 0]
[1, 1]
[4, 8]
[9, 27]
[16, 64]



Because using map is equivalent to for loops, with an extra code we can always write a general mapping utility:

>>> def mymap(aFunc, aSeq):
	result = []
	for x in aSeq: result.append(aFunc(x))
	return result

>>> list(map(sqr, [1, 2, 3]))
[1, 4, 9]
>>> mymap(sqr, [1, 2, 3])
[1, 4, 9]
>>> 

Since it's a built-in, map is always available and always works the same way. It also has some performance benefit because it is usually faster than a manually coded for loop. On top of those, map can be used in more advance way. For example, given multiple sequence arguments, it sends items taken form sequences in parallel as distinct arguments to the function:

>>> pow(3,5)
243
>>> pow(2,10)
1024
>>> pow(3,11)
177147
>>> pow(4,12)
16777216
>>> 
>>> list(map(pow, [2, 3, 4], [10, 11, 12]))
[1024, 177147, 16777216]
>>> 

As in the example above, with multiple sequences, map() expects an N-argument function for N sequences. In the example, pow function takes two arguments on each call.

Here is another example of map() doing element-wise addition with two lists:

x = [1,2,3]
y = [4,5,6]

from operator import add
print map(add, x, y)  # output [5, 7, 9]

The map call is similar to the list comprehension expression. But map applies a function call to each item instead of an arbitrary expression. Because of this limitation, it is somewhat less general tool. In some cases, however, map may be faster to run than a list comprehension such as when mapping a built-in function. And map requires less coding.

If function is None, the identity function is assumed; if there are multiple arguments, map() returns a list consisting of tuples containing the corresponding items from all iterables (a kind of transpose operation). The iterable arguments may be a sequence or any iterable object; the result is always a list:

>>> m = [1,2,3]
>>> n = [1,4,9]
>>> new_tuple = map(None, m, n)
>>> new_tuple
[(1, 1), (2, 4), (3, 9)]

For Python 3, we may want to use itertools.zip_longest instead:

>>> m = [1,2,3]
>>> n = [1,4,9]
>>> from itertools import zip_longest
>>> for i,j in zip_longest(m,n):
...    print(i,j)
... 
1 1
2 4
3 9

The zip_longest() makes an iterator that aggregates elements from the two iterables (m & n).



We can do typecasting using map. In the following example, we construct 4x3 matrix from the user input:

for _ in range(4):
    arr.append(list(map(int, input().rstrip().split())))
print(arr)

With an input from the user:

1 2 3
4 5 6
7 8 9
10 11 12

We get a 4x3 integer array:

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]






filter and reduce

As the name suggests filter extracts each element in the sequence for which the function returns True. The reduce function is a little less obvious in its intent. This function reduces a list to a single value by combining elements via a supplied function. The map function is the simplest one among Python built-ins used for functional programming.

These tools apply functions to sequences and other iterables. The filter filters out items based on a test function which is a filter and apply functions to pairs of item and running result which is reduce.

Because they return iterables, range and filter both require list calls to display all their results in Python 3.0.

As an example, the following filter call picks out items in a sequence that are less than zero:

>>> list(range(-5,5))
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
>>>
>>> list( filter((lambda x: x < 0), range(-5,5)))
[-5, -4, -3, -2, -1]
>>> 

Items in the sequence or iterable for which the function returns a true, the result are added to the result list. Like map, this function is roughly equivalent to a for loop, but it is built-in and fast:

>>> 
>>> result = []
>>> for x in range(-5, 5):
	if x < 0:
		result.append(x)

		
>>> result
[-5, -4, -3, -2, -1]
>>> 

Here is another use case for filter(): finding intersection of two lists:

a = [1,2,3,5,7,9]
b = [2,3,5,6,7,8]
print filter(lambda x: x in a, b)  # prints out [2, 3, 5, 7]

Note that we can do the same with list comprehension:

a = [1,2,3,5,7,9]
b = [2,3,5,6,7,8]
print [x for x in a if x in b] # prints out [2, 3, 5, 7]


The reduce is in the functools in Python 3.0. It is more complex. It accepts an iterator to process, but it's not an iterator itself. It returns a single result:

>>> 
>>> from functools import reduce
>>> reduce( (lambda x, y: x * y), [1, 2, 3, 4] )
24
>>> reduce( (lambda x, y: x / y), [1, 2, 3, 4] )
0.041666666666666664
>>> 

At each step, reduce passes the current product or division, along with the next item from the list, to the passed-in lambda function. By default, the first item in the sequence initialized the starting value.

Here's the for loop version of the first of these calls, with the multiplication hardcoded inside the loop:

>>> L = [1, 2, 3, 4]
>>> result = L[0]
>>> for x in L[1:]:
	result = result * x

>>> result
24
>>> 

Let's make our own version of reduce.

>>> def myreduce(fnc, seq):
	tally = seq[0]
	for next in seq[1:]:
		tally = fnc(tally, next)
	return tally

>>> myreduce( (lambda x, y: x * y), [1, 2, 3, 4])
24
>>> myreduce( (lambda x, y: x / y), [1, 2, 3, 4])
0.041666666666666664
>>> 

We can concatenate a list of strings to make a sentence. Using the Dijkstra's famous quote on bug:

import functools
>>> L = ['Testing ', 'shows ', 'the ', 'presence', ', ','not ', 'the ', 'absence ', 'of ', 'bugs']
>>> functools.reduce( (lambda x,y:x+y), L)
'Testing shows the presence, not the absence of bugs'
>>> 

We can get the same result by using join :

>>> ''.join(L)
'Testing shows the presence, not the absence of bugs'

We can also use operator to produce the same result:

>>> import functools, operator
>>> functools.reduce(operator.add, L)
'Testing shows the presence, not the absence of bugs'
>>> 

The built-in reduce also allows an optional third argument placed before the items in the sequence to serve as a default result when the sequence is empty.



Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong







Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...


Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm




Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms and concepts

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master